If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+20x=75
We move all terms to the left:
2x^2+20x-(75)=0
a = 2; b = 20; c = -75;
Δ = b2-4ac
Δ = 202-4·2·(-75)
Δ = 1000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1000}=\sqrt{100*10}=\sqrt{100}*\sqrt{10}=10\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-10\sqrt{10}}{2*2}=\frac{-20-10\sqrt{10}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+10\sqrt{10}}{2*2}=\frac{-20+10\sqrt{10}}{4} $
| −13=9r/9 +8 | | 3b/2-1=5 | | ^2-10=9x | | 2b/3-1=5 | | 3b/3-1=5 | | x=4x-78 | | 3x+8x+4x=63x+63 | | a=2a-42 | | 7/6=x/6.4 | | z/2+17=12 | | 2x+3=3/ | | 2x+1+4x-91/4=180 | | L+4.1+w=61 | | 3(v-9)=-54 | | 6V+1=v+16 | | -49=7(a+5) | | z/2+17=-5 | | 1=u/8+4 | | X+6=-x-8 | | 19x-2=40.54x+4 | | .6x+3=18 | | k^2+7k-34=0 | | –45=9(w+2) | | -33=-7s-4s | | 4x+5(7x-6)=-123 | | 28x−4⋅163x−5=169x+2 | | 4x-6=1” | | 15+4.50x=12.50+5x | | -63=9(t-8) | | 4-8v=-60 | | 5x-20=5x+60 | | 49=-7(b-1) |